Descriptive Statistics D:\PROJECTS\NPRA\TOPSRE~1\WINKST~1\SAD.DBF

Variable Name is AREA

Percentiles:		Tukey Five Number Summary:
0.0% = 0.25	Minimum	Minimum = 0.25
0.5% = 0.25		Fourth = 0.75
2.5% = 0.25		Median = 1.25
10.0% = 0.25		Fourth $= 3.50$
25.0% = 0.75	Quartile	Maximum = 23.25
50.0% = 1.25	Median	
75.0% = 3.6875	Quartile	
90.0% = 10.8499	9	
97.5% = 21.825		
99.5% = 23.25		Test for normality results:
100.0% = 23.25	Maximum	$D = .281$ $p \le 0.001$

Five number summary was calculated using the technique from UNDERSTANDING ROBUST AND EXPLORATORY DATA ANALYSIS by Hoaglin, Mosteller And Tukey. See complete reference in WINKS manual.

Confidence Intervals about the mean:

```
80 % C.I. based on a t(57) critical value of 1.3 is (2.83479, 4.69969) 90 % C.I. based on a t(57) critical value of 1.68 is (2.56223, 4.97225) 95 % C.I. based on a t(57) critical value of 2.01 is (2.32553, 5.20895) 98 % C.I. based on a t(57) critical value of 2.4 is (2.04579, 5.48869) 99 % C.I. based on a t(57) critical value of 2.67 is (1.85213, 5.68235)
```

The normality test suggests that the data are not normally distributed. The test for normality is a modified Kolmogorov-Smirnov test based on papers by Lilliefors and Dallal & Wilkinson. References in latenews.txt.

Sadlerochit Closures — Area

AREA

Descriptive Statistics D:\PROJECTS\NPRA\TOPSRE~1\WINKST~1\SAD.DBF

Variable Name is HEIGHT

Percentiles: 0.0% 0.5% 2.5% 10.0% 25.0% 50.0% 75.0% 90.0% 97.5%	= 5.00 Minimum = 5.00 = 5.2375 = 10.99 = 20.775 Quartile = 31.10 Median = 53.65 Quartile = 78.50999 = 169.0777	Tukey Five Number Summary: Minimum = 5.00 Fourth = 21.00 Median = 31.10 Fourth = 52.20 Maximum = 220.90
99.5%	= 220.90	Test for normality results:
100.0%	= 220.90 Maximum	D = .177 p <= 0.001

Five number summary was calculated using the technique from UNDERSTANDING ROBUST AND EXPLORATORY DATA ANALYSIS by Hoaglin, Mosteller And Tukey. See complete reference in WINKS manual.

Confidence Intervals about the mean:

```
80 % C.I. based on a t(57) critical value of 1.3 is (35.76485, 47.54204) 90 % C.I. based on a t(57) critical value of 1.68 is (34.04357, 49.26333) 95 % C.I. based on a t(57) critical value of 2.01 is (32.54877, 50.75812) 98 % C.I. based on a t(57) critical value of 2.4 is (30.78219, 52.5247) 99 % C.I. based on a t(57) critical value of 2.67 is (29.55918, 53.74772)
```

The normality test suggests that the data are not normally distributed. The test for normality is a modified Kolmogorov-Smirnov test based on papers by Lilliefors and Dallal & Wilkinson. References in latenews.txt.

Sadlerochit Closures — height

HEIGHT

Linear Regression and Correlation

D:\PROJECTS\NPRA\TOPSRE~1\WINKST~1\SAD.DBF

Dependent variable is HEIGHT, 1 independent variables, 58 cases.

Variable	Coefficient	St. Error	t-value	p(2 tail)
Intercept	24.701445	3.9059719	6.3240203	<.001
AREA	4.4998451	.5921046	7.5997469	<.001

R-Square = 0.5077 Adjusted R-Square = 0.4989

Analysis of Variance to Test Regression Relation

Source	Sum of Sqs	df	Mean Sq	F	p-value
Regression Error	34439.998 33392.804	1 56	34439.998 596.30008	57.756153	<.001
Total	67832.803	57			

A low p-value suggests that the dependent variable HEIGHT may be linearly related to independent variable(s).

MEAN X = 3.767 S.D. X = 5.463 CORR XSS = 1700.858 MEAN Y = 41.653 S.D. Y = 34.497 CORR YSS = 67832.76 REGRESSION MS = 34439.998 RESIDUAL MS = 596.3

Pearson's r (Correlation Coefficient) = 0.7125

The linear regression equation is:
HEIGHT = 24.70144 + 4.499845 * AREA

Test of hypothesis to determine significance of relationship: H(null): Slope = 0 or H(null): r = 0 (two-tailed test) t = 7.6 with 56 degrees of freedom p <= .001

Note: A low p-value implies that the slope does not = 0.

Correlation Coefficients D:\PROJECTS\NPRA\TOPSRE~1\WINKST~1\SAD.DBF

Variables used : AREA and HEIGHT

Number of cases used: 58

Pearson's r (Correlations Coefficient) = 0.7125 R-Square = 0.5077

Test of hypothesis to determine significance of relationship: H(null): Slope = 0 or H(null): r = 0

(Pearson's) t = 7.599747 with 56 d.f. p < 0.001 (A low p-value implies that the slope does not = 0.)

Spearman's Rank Correlation Coefficient = 0.6257

(Spearman's) t = 6.002323 with 56 d.f. p < 0.001

Linear Regression and Correlation

D:\PROJECTS\NPRA\TOPSRE~1\WINKST~1\SAD.DBF

Dependent variable is LOGHEIGHT, 1 independent variables, 58 cases.

Variable	Coefficient	St. Error	 t-value 	p(2 tail)
Intercept	3.2520448	.0795531	40.878902	<.001
LOGAREA	.4043018	.0588334	6.8719743	<.001

R-Square = 0.4575 Adjusted R-Square = 0.4478

Analysis of Variance to Test Regression Relation

Source	Sum of Sqs	df	Mean Sq	F	p-value	
Regression Error	14.784281 17.531746	1 56	14.784281 .3130669	47.224031	<.001	
Total	32.316027	57				_

A low p-value suggests that the dependent variable LOGHEIGHT may be linearly related to independent variable(s).

MEAN X = .519 S.D. X = 1.26 CORR XSS = 90.446 MEAN Y = 3.462 S.D. Y = .753 CORR YSS = 32.316 REGRESSION MS= 14.784 RESIDUAL MS= .313

Pearson's r (Correlation Coefficient) = 0.6764

The linear regression equation is:

LOGHEIGHT = 3.252045 + .4043018 * LOGAREA

Test of hypothesis to determine significance of relationship: H(null): Slope = 0 or H(null): r = 0 (two-tailed test) t = 6.87 with 56 degrees of freedom p <= .001

Note: A low p-value implies that the slope does not = 0.

